查看更多空气质量指数 动力区空气pm2.5实用查询——动力区空气质量指数
空气动力学
空气动力学 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。空气动力学重点研究飞行器的飞行原理,是航空航天技术最重要的理论基础之一。气体流动在不同的速度范围呈现不同的特点。空气动力学的发展经历了低速、高速和新变革三个时期。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 空气动力学 - 简介 相关书籍 空气动力学是研究空气和其他气体的运动以及它们与物体相对运动时相互作用的科学,简称为气动力学。空气动力学重点研究飞行器的飞行原理,是航空航天技术最重要的理论基础之一。在任何一种飞行器的设计中,必须解决两方面的气动问题:一是在确定新飞行器所要求的性能后,寻找满足要求的外形和气动措施;一是在确定飞行器外形和其他条件后,预测飞行器的气动特性,为飞行器性能计算和结构、控制系统的设计提供依据。这些在飞行速度接近到超过声速(又称音速)时更为重要。 20世纪以来,飞机和航天器的外形不断改进,性能不断提高,都是与空气动力学的发展分不开的。亚音速飞机为获得高升阻比采用大展弦比机翼;跨音速飞机为了减小波阻采用后掠机翼,机翼和机身的布置满足面积律;超音速飞机为了利用旋涡升力采用细长机翼(见机翼空气动力特性);高超音速再入飞行器为了减少气动加热采用钝的前缘形状,这些都是在航空航天技术中成功地应用空气动力学研究成果的典型例子。除此以外,空气动力学在气象、交通、建筑、能源、化工、环境保护、自动控制等领域都得到广泛的应用。 空气动力学 - 学科分支 空气动力学 空气动力学是流体力学的一个分支。气体流动在不同的速度范围呈现不同的特点。飞行器的飞行马赫数大于0.3时,就必须考虑空气压缩性。当飞行速度接近音速时,在飞行器的绕流中会出现局部的超音速区,在其后形成激波,使迎面阻力剧增。当飞行速度超过音速几倍时,由于高速气流的温度升高,气体内部发生种种物理化学变化,这时必须同时考虑气体的热力现象和动力现象,研究这些现象的学科就是空气动力学的一个分支气动热力学。 根据不同的马赫数(M),可将空气动力学分成亚音速空气动力学(M约小于0.8)、跨音速空气动力学(M在0.8~1.2之间)、超音速空气动力学(M在1.2~5.0之间)和高超音速空气动力学 (M大于 5.0)。当雷诺数(Re)足够大时,仅在速度梯度和温度梯度较大的区域如边界层和尾迹内,气体的粘性对流动才有明显的影响。根据粘性是否可以忽略,空气动力学可分为无粘性(理想)空气动力学和粘性空气动力学。粘性空气动力学中最重要的是边界层理论。根据不同的克努曾数Kn(气体分子平均自由路程与流动的特征长度之比,Kn≈M/Re),气体流动又可分成连续流(Kn约小于0.01)、滑流(Kn在0.01~0.1之间)、过渡流(Kn在0.1~10之间)和自由分子流(Kn约大于10)。讨论后三种流动的空气动力学叫做稀薄空气动力学。对于自由分子流,描述连续介质运动的方程如纳维尔-斯托克斯方程已不再适用,可采用玻耳兹曼方程。 按照流场是否具有外边界,空气动力学可分为研究飞行器外部绕流的外流空气动力学和研究发动机、风洞等管道内流动的内流空气动力学。按照流场是否与时间有关,可分为定常空气动力学和非定常空气动力学。按研究方法不同,又可分为理论空气动力学和实验空气动力学。随着计算机的发展,计算空气动力学已成为动力学一个独立的分支学科。空气动力学还同其他学科相互渗透,形成许多学科交叉的边缘学科,如气动弹性力学、磁流体力学等。 空气动力学 - 发展概况 空气动力学示意图 空气动力学的发展经历了低速、高速和新变革三个时期。 低速时期 高速时期 新变革时期 空气动力学 - 学科内容 |
上一篇:中国航天空气动力技术研究院 | 下一篇:上海爱迪信环境技术有限公司 |